Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Transl Med ; 20(1): 270, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1902395

ABSTRACT

BACKGROUND: Heart failure (HF) is a global leading cause of mortality despite implementation of guideline directed therapy which warrants a need for novel treatment strategies. Proof-of-concept clinical trials of anakinra, a recombinant human Interleukin-1 (IL-1) receptor antagonist, have shown promising results in patients with HF. METHOD: We designed a single center, randomized, placebo controlled, double-blind phase II randomized clinical trial. One hundred and two adult patients hospitalized within 2 weeks of discharge due to acute decompensated HF with reduced ejection fraction (HFrEF) and systemic inflammation (high sensitivity of C-reactive protein > 2 mg/L) will be randomized in 2:1 ratio to receive anakinra or placebo for 24 weeks. The primary objective is to determine the effect of anakinra on peak oxygen consumption (VO2) measured at cardiopulmonary exercise testing (CPX) after 24 weeks of treatment, with placebo-corrected changes in peak VO2 at CPX after 24 weeks (or longest available follow up). Secondary exploratory endpoints will assess the effects of anakinra on additional CPX parameters, structural and functional echocardiographic data, noninvasive hemodynamic, quality of life questionnaires, biomarkers, and HF outcomes. DISCUSSION: The current trial will assess the effects of IL-1 blockade with anakinra for 24 weeks on cardiorespiratory fitness in patients with recent hospitalization due to acute decompensated HFrEF. TRIAL REGISTRATION: The trial was registered prospectively with ClinicalTrials.gov on Jan 8, 2019, identifier NCT03797001.


Subject(s)
Heart Failure , Adult , Double-Blind Method , Humans , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1 , Quality of Life , Stroke Volume/physiology , Treatment Outcome
2.
Pharmacol Ther ; 236: 108053, 2022 08.
Article in English | MEDLINE | ID: covidwho-1559421

ABSTRACT

The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that plays a major role in innate immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine production, primarily interleukin(IL)-1ß and IL-18, and, eventually, inflammatory cell death - pyroptosis. While a balanced inflammatory response favors damage resolution and tissue healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). Several pharmacological agents selectively targeting the NLRP3 inflammasome system have been developed and tested in animals and early phase human studies with overall promising results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been recently shown to significantly reduce cardiovascular events in patients with chronic coronary disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview of the current and future therapeutic approaches targeting the NLRP3 inflammasome.


Subject(s)
Cardiovascular Diseases , Inflammasomes , Animals , Cardiovascular Diseases/drug therapy , Humans , Immunity, Innate , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
3.
J Thromb Haemost ; 19(12): 3080-3089, 2021 12.
Article in English | MEDLINE | ID: covidwho-1526386

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with macro- and micro-thromboses, which are triggered by endothelial cell activation, coagulopathy, and uncontrolled inflammatory response. Conventional antithrombotic agents are under assessment in dozens of randomized controlled trials (RCTs) in patients with COVID-19, with preliminary results not demonstrating benefit in several studies. OBJECTIVES: Given the possibility that more novel agents with antithrombotic effects may have a potential utility for management of patients with COVID-19, we assessed ongoing RCTs including these agents with their potential mechanism of action in this population. METHODS: We searched clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to identify RCTs of novel antithrombotic agents in patients with COVID-19. RESULTS: Based on a systematic literature search, 27 RCTs with 10 novel antithrombotic agents (including nafamostat, dociparstat, rNAPc2, and defibrotide) were identified. The results from these trials have not been disseminated yet. The studied drugs in the ongoing or completed RCTs include agents affecting the coagulation cascade, drugs affecting endothelial activation, and mixed acting agents. Their postulated antithrombotic mechanisms of action and their potential impact on patient management are summarized. CONCLUSION: Some novel antithrombotic agents have pleiotropic anti-inflammatory and antiviral effects, which may help reduce the viral load or fibrosis, and improve oxygenation. Results from ongoing RCTs will elucidate their actual role in the management of patients with COVID-19.


Subject(s)
COVID-19 , Fibrinolytic Agents , Antiviral Agents , Fibrinolytic Agents/adverse effects , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2
4.
J Am Coll Cardiol ; 78(16): 1635-1654, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1454219

ABSTRACT

Coronavirus disease-2019 (COVID-19) is associated with systemic inflammation, endothelial activation, and multiorgan manifestations. Lipid-modulating agents may be useful in treating patients with COVID-19. These agents may inhibit viral entry by lipid raft disruption or ameliorate the inflammatory response and endothelial activation. In addition, dyslipidemia with lower high-density lipoprotein cholesterol and higher triglyceride levels portend worse outcomes in patients with COVID-19. Upon a systematic search, 40 randomized controlled trials (RCTs) with lipid-modulating agents were identified, including 17 statin trials, 14 omega-3 fatty acids RCTs, 3 fibrate RCTs, 5 niacin RCTs, and 1 dalcetrapib RCT for the management or prevention of COVID-19. From these 40 RCTs, only 2 have reported preliminary results, and most others are ongoing. This paper summarizes the ongoing or completed RCTs of lipid-modulating agents in COVID-19 and the implications of these trials for patient management.


Subject(s)
COVID-19 Drug Treatment , COVID-19/prevention & control , Fatty Acids, Omega-3/therapeutic use , Fibric Acids/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Niacin/therapeutic use , Amides/pharmacology , Amides/therapeutic use , Esters/pharmacology , Esters/therapeutic use , Fatty Acids, Omega-3/pharmacology , Fibric Acids/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lipid Regulating Agents/pharmacology , Lipid Regulating Agents/therapeutic use , Niacin/pharmacology , Randomized Controlled Trials as Topic , Sulfhydryl Compounds/pharmacology , Sulfhydryl Compounds/therapeutic use
5.
J Clin Transl Sci ; 5(1): e136, 2021.
Article in English | MEDLINE | ID: covidwho-1324370

ABSTRACT

INTRODUCTION: Controlled clinical trials (CCTs) have traditionally been limited to urban academic clinical centers. Implementation of CCTs in rural setting is challenged by lack of resources, the inexperience of patient care team members in CCT conductance and workflow interruption, and global inexperience with remote data monitoring. METHODS: We report our experience during the coronavirus disease 2019 (COVID-19) pandemic in activating through remote monitoring a multicenter clinical trial (the Study of Efficacy and Safety of Canakinumab Treatment for cytokine release syndrome (CRS) in Participants with COVID-19-induced Pneumonia [CAN-COVID] trial, ClinicalTrials.gov Identifier: NCT04362813) at a rural satellite hospital, the VCU Health Community Memorial Hospital (VCU-CMH) in South Hill, VA, that is part of the larger VCU Health network, with the lead institution being VCU Health Medical College of Virginia Hospital (VCU-MCV), Richmond, VA. We used the local resources at the facility and remote guidance and oversight from the VCU-MCV resources using a closed-loop communication network. Investigational pharmacy, pathology, and nursing were essential to operate the work in coordination with the lead institution. RESULTS: Fifty-one patients with COVID-19 were enrolled from May to August 2020, 35 (69%) at VCU-MCV, and 16 (31%) at VCU-CMH. Among the patients enrolled at VCU-CMH, 37.5% were female, 62.5% Black, and had a median age of 60 (interquartile range 56-68) years. CONCLUSION: Local decentralization of this trial in our experience gave rural patients access to a novel treatment and also accelerated enrollment and more diverse participants' representative of the target population.

6.
Lancet Rheumatol ; 3(6): e410-e418, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1307286

ABSTRACT

BACKGROUND: In patients with COVID-19, granulocyte-macrophage colony stimulating factor (GM-CSF) might be a mediator of the hyperactive inflammatory response associated with respiratory failure and death. We aimed to evaluate whether mavrilimumab, a monoclonal antibody to the GM-CSF receptor, would improve outcomes in patients with COVID-19 pneumonia and systemic hyperinflammation. METHODS: This investigator-initiated, multicentre, double-blind, randomised trial was done at seven hospitals in the USA. Inclusion required hospitalisation, COVID-19 pneumonia, hypoxaemia, and a C-reactive protein concentration of more than 5 mg/dL. Patients were excluded if they required mechanical ventilation. Patients were randomly assigned (1:1) centrally, with stratification by hospital site, to receive mavrilimumab 6 mg/kg as a single intravenous infusion, or placebo. Participants and all clinical and research personnel were masked to treatment assignment. The primary endpoint was the proportion of patients alive and off supplemental oxygen therapy at day 14. The primary outcome and safety were analysed in the intention-to-treat population. This trial is registered at ClinicalTrials.gov, NCT04399980, NCT04463004, and NCT04492514. FINDINGS: Between May 28 and Sept 15, 2020, 40 patients were enrolled and randomly assigned to mavrilimumab (n=21) or placebo (n=19). A trial of 60 patients was planned, but given slow enrolment, the study was stopped early to inform the natural history and potential treatment effect. At day 14, 12 (57%) patients in the mavrilimumab group were alive and off supplemental oxygen therapy compared with nine (47%) patients in the placebo group (odds ratio 1·48 [95% CI 0·43-5·16]; p=0·76). There were no treatment-related deaths, and adverse events were similar between groups. INTERPRETATION: There was no significant difference in the proportion of patients alive and off oxygen therapy at day 14, although benefit or harm of mavrilimumab therapy in this patient population remains possible given the wide confidence intervals, and larger trials should be completed. FUNDING: Kiniksa Pharmaceuticals.

7.
J Am Coll Cardiol ; 77(15): 1903-1921, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1235916

ABSTRACT

Endothelial injury and microvascular/macrovascular thrombosis are common pathophysiological features of coronavirus disease-2019 (COVID-19). However, the optimal thromboprophylactic regimens remain unknown across the spectrum of illness severity of COVID-19. A variety of antithrombotic agents, doses, and durations of therapy are being assessed in ongoing randomized controlled trials (RCTs) that focus on outpatients, hospitalized patients in medical wards, and patients critically ill with COVID-19. This paper provides a perspective of the ongoing or completed RCTs related to antithrombotic strategies used in COVID-19, the opportunities and challenges for the clinical trial enterprise, and areas of existing knowledge, as well as data gaps that may motivate the design of future RCTs.


Subject(s)
COVID-19 Drug Treatment , Fibrinolytic Agents/therapeutic use , Thromboembolism/prevention & control , COVID-19/complications , Humans , Randomized Controlled Trials as Topic , Thromboembolism/virology
8.
Nat Rev Immunol ; 21(5): 319-329, 2021 05.
Article in English | MEDLINE | ID: covidwho-1171402

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a clinical syndrome caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe disease show hyperactivation of the immune system, which can affect multiple organs besides the lungs. Here, we propose that SARS-CoV-2 infection induces a process known as immunothrombosis, in which activated neutrophils and monocytes interact with platelets and the coagulation cascade, leading to intravascular clot formation in small and larger vessels. Microthrombotic complications may contribute to acute respiratory distress syndrome (ARDS) and other organ dysfunctions. Therapeutic strategies aimed at reducing immunothrombosis may therefore be useful. Several antithrombotic and immunomodulating drugs have been proposed as candidates to treat patients with SARS-CoV-2 infection. The growing understanding of SARS-CoV-2 infection pathogenesis and how it contributes to critical illness and its complications may help to improve risk stratification and develop targeted therapies to reduce the acute and long-term consequences of this disease.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Cytokine Release Syndrome/pathology , Venous Thrombosis/immunology , Venous Thrombosis/pathology , Blood Coagulation/immunology , Blood Platelets/immunology , Critical Illness/therapy , Cytokine Release Syndrome/immunology , Endothelium, Vascular/pathology , Fibrinolytic Agents/therapeutic use , Humans , Immunity, Innate/immunology , Lung/blood supply , Lung/pathology , Lung/virology , Monocytes/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Venous Thrombosis/prevention & control
9.
Crit Care Explor ; 2(8): e0178, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-729202

ABSTRACT

The causative agent for coronavirus disease 2019, severe acute respiratory syndrome coronavirus 2, appears exceptional in its virulence and immunopathology. In some patients, the resulting hyperinflammation resembles a cytokine release syndrome. Our knowledge of the immunopathogenesis of coronavirus disease 2019 is evolving and anti-cytokine therapies are under active investigation. This narrative review summarizes existing knowledge of the immune response to coronavirus infection and highlights the current and potential future roles of therapeutic strategies to combat the hyperinflammatory response of patients with coronavirus disease 2019. DATA SOURCES: Relevant and up-to-date literature, media reports, and author experiences were included from Medline, national newspapers, and public clinical trial databases. STUDY SELECTION: The authors selected studies for inclusion by consensus. DATA EXTRACTION: The authors reviewed each study and selected approrpriate data for inclusion through consensus. DATA SYNTHESIS: Hyperinflammation, reminiscent of cytokine release syndromes such as macrophage activation syndrome and hemophagocytic lymphohistiocytosis, appears to drive outcomes among adults with severe coronavirus disease 2019. Cytokines, particularly interleukin-1 and interleukin-6, appear to contribute importantly to such systemic hyperinflammation. Ongoing clinical trials will determine the efficacy and safety of anti-cytokine therapies in coronavirus disease 2019. In the interim, anti-cytokine therapies may provide a treatment option for adults with severe coronavirus disease 2019 unresponsive to standard critical care management, including ventilation. CONCLUSIONS: This review provides an overview of the current understanding of the immunopathogenesis of coronavirus disease 2019 in adults and proposes treatment considerations for anti-cytokine therapy use in adults with severe disease.

10.
Front Immunol ; 11: 1625, 2020.
Article in English | MEDLINE | ID: covidwho-688729

ABSTRACT

COVID-19 is a clinical syndrome ranging from mild symptoms to severe pneumonia that often leads to respiratory failure, need for mechanical ventilation, and death. Most of the lung damage is driven by a surge in inflammatory cytokines [interleukin-6, interferon-γ, and granulocyte-monocyte stimulating factor (GM-CSF)]. Blunting this hyperinflammation with immunomodulation may lead to clinical improvement. GM-CSF is produced by many cells, including macrophages and T-cells. GM-CSF-derived signals are involved in differentiation of macrophages, including alveolar macrophages (AMs). In animal models of respiratory infections, the intranasal administration of GM-CSF increased the proliferation of AMs and improved outcomes. Increased levels of GM-CSF have been recently described in patients with COVID-19 compared to healthy controls. While GM-CSF might be beneficial in some circumstances as an appropriate response, in this case the inflammatory response is maladaptive by virtue of being later and disproportionate. The inhibition of GM-CSF signaling may be beneficial in improving the hyperinflammation-related lung damage in the most severe cases of COVID-19. This blockade can be achieved through antagonism of the GM-CSF receptor or the direct binding of circulating GM-CSF. Initial findings from patients with COVID-19 treated with a single intravenous dose of mavrilimumab, a monoclonal antibody binding GM-CSF receptor α, showed oxygenation improvement and shorter hospitalization. Prospective, randomized, placebo-controlled trials are ongoing. Anti-GM-CSF monoclonal antibodies, TJ003234 and gimsilumab, will be tested in clinical trials in patients with COVID-19, while lenzilumab received FDA approval for compassionate use. These trials will help inform whether blunting the inflammatory signaling provided by the GM-CSF axis in COVID-19 is beneficial.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections , Drug Delivery Systems , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Pandemics , Pneumonia, Viral , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Animals , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/pathology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology , SARS-CoV-2 , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology
11.
Cardiovasc Drugs Ther ; 35(2): 249-259, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-644754

ABSTRACT

Coronavirus disease of 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly the world over. The disease was declared "pandemic" by the World Health Organization. An approved therapy for patients with COVID-19 has yet to emerge; however, there are some medications used in the treatment of SARS-CoV-2 infection globally including hydroxychloroquine, remdesivir, dexamethasone, protease inhibitors, and anti-inflammatory agents. Patients with underlying cardiovascular disease are at increased risk of mortality and morbidity from COVID-19. Moreover, patients with chronic stable states and even otherwise healthy individuals might sustain acute cardiovascular problems due to COVID-19 infection. This article seeks to review the latest evidence with a view to explaining possible pharmacotherapies for the cardiovascular complications of COVID-19 including acute coronary syndrome, heart failure, myocarditis, arrhythmias, and venous thromboembolism, as well as possible interactions between these medications and those currently administered (or under evaluation) in the treatment of COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Cardiovascular Diseases , Antiviral Agents/classification , Antiviral Agents/pharmacology , COVID-19/complications , COVID-19/epidemiology , COVID-19/physiopathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/therapy , Comorbidity , Humans , Prognosis , Risk Assessment , SARS-CoV-2
12.
J Cardiovasc Pharmacol ; 75(5): 359-367, 2020 05.
Article in English | MEDLINE | ID: covidwho-218377

ABSTRACT

A novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly across the globe since December 2019. Coronavirus disease 2019 (COVID-19) has a significantly higher mortality rate than seasonal influenza and has disproportionately affected older adults, especially those with cardiovascular disease and related risk factors. Adverse cardiovascular sequelae, such as myocarditis, acute myocardial infarction, and heart failure, have been reported in patients with COVID-19. No established treatment is currently available; however, several therapies, including remdesivir, hydroxychloroquine and chloroquine, and interleukin (IL)-6 inhibitors, are being used off-label and evaluated in ongoing clinical trials. Considering these therapies are not familiar to cardiovascular clinicians managing these patients, this review describes the pharmacology of these therapies in the context of their use in patients with cardiovascular-related conditions.


Subject(s)
Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/virology , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Betacoronavirus/isolation & purification , COVID-19 , Cardiovascular Diseases/metabolism , Clinical Trials, Phase III as Topic , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Drug Interactions , Humans , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Randomized Controlled Trials as Topic , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL